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Two driving questions that arise in the study of complex spatiotemporal data are:
• How can one e�ciently characterize and compare spatiotemporally complex patterns?
• How can changes in geometric and topological structure inform our understanding of
the mechanisms driving the dynamics in the system?

I address these questions predominantly through persistent homology [5], a method from alge-
braic topology which detects and measures topological structure of data or functions by track-
ing changes in topological features (such as connected components, holes, or enclosed voids)
through a �ltration on the data. Three snapshots of a common distance-based �ltration on
point cloud data are shown in the �gure below. The result of computing persistence is a multi-
scale representation of the topological structure of potentially very high dimensional data, and
takes the form of a collection of sets of points.

Flexibility in this framework requires careful design of �ltrations to preserve
interpretability and to capture discriminatory features of the data. Once per-
sistent homology is computed, the results must be interpreted, that is, trans-
formed to a space with additional structure (discussed in the next section) or
summarized in a way that highlights features such as irregularities. My re-
search focuses on developing �ltrations as well as transformations and sum-
maries of persistence diagrams in the context of studying partial di�erential

equations and dynamical system models.
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Connecting Persistence andMachine Learning We devel-
oped persistence images [3], a stable vector representation
of persistence diagrams, shown in the �gure on the right.
This opens the door to a wide variety of previously un-
available machine learning techniques. This is instru-
mental in, for example, learning model parameters from
samples (discussed later). Persistence images have been
incorporated into several leading software packages for topological data analysis [4, 11].
In collaboration with a group from a Women in Computational Topology workshop, we re-
�ned a heat map representation of two simultaneous �ltrations [2], which can give a richer
representation of the data. Both of these tools are important for interpretation of persistence
diagrams. In the following sections I will discuss a number of applications where transforming
persistence diagrams or using them to build statistics on the data opened the door to a number
of machine learning techniques and was vital to studying the system.
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Quantifying Properties of Patterns Quantifying topological struc-
ture of a pattern leads to meaningful low dimensional summaries
of data and can be employed to study geometric properties such as
disorder, irregularities, or roughness of an evolving structure.
In [7], we de�ned a persistence-based measure of order for near
hexagonal arrays of nanodots formed by ion bombardment of a bi-
nary compound. The bottom right panel in the �gure on the left is
the persistence diagram which quanti�es defects in the pattern in the
top left panel. Two examples in the �ltration are shown, and high-
light defects in the lattice pattern. The persistence-based measure

captures disorder at a range of length scales, while other methods lacked sensitivity in certain
contexts. This method can be extended to characterize general lattices, and defects therein,
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described as any integer combination of two vectors. Using this measure over the evolution
of patterns, we examined the in�uence of a speci�c parameter in the long-term overall order.
Well-ordered patterns take time to evolve. We found, surprisingly, that under certain condi-
tions, a slower initial commitment to a pattern leads to better long-term order. We plan to use
this method to study the conditions under which defects spontaneously resolve or catastroph-
ically worsen.

For brevity, I will summarize several of my projects which characterize complex structure.
• With a team from the CSU Pattern Analysis Laboratory, we built a readily computable
fractal dimension [1] for measures. Initial �nding suggest that the distributions created
from the persistence diagrams might be a useful techniques for distinguishing between
types of noise (i.e. noise originating from di�erent probability measures).

• With a group of experimental physicists in Helmholtz-Zentrum Dresden-Rossendorf
in Germany, we developed a persistence based statistic that measures the prominence
structures that arise when a semiconductor is bombarded with an ion beam at an elevated
temperature [10], [8]. (See panel (b), below.)

• With a group in the CSU Watershed Science program, we developed a persistence based
measure of the multiscale roughness of melting snowpack. This is used to quantify
roughness of snow�elds from LIDAR data [6] which a�ects wind resistance, energy ex-
change, and meltwater production. (See panel (c), below.)

• With colleagues at Oxford, Cambridge, and Berkeley (graduate student), we are using
persistence to measure “patchiness” of coral, algae turf, and micro-algae and to compare
coral reef data to the leading models. (See panel (d), below.)

Model and Parameter Learning Self-organized pattern formation is frequently the result of
interactions of a number of di�erent phenomenological processes which are encoded in the
parameters of mathematical models. Some processes are well understood, and others are not.
Insight into the in�uence of parameters helps build understanding of the underlying mecha-
nisms driving the dynamics.

The next set of projects illustrate how persistence diagrams
can be leveraged for parameter identi�cation in simulated
data. In [9], we use a signature in the persistence diagram
to learn parameters of noisy data arising from the logis-
tic map, a discrete time dynamical systems which exhibits
chaotic behavior (see panel (e)). We leveraged persistence
images and support vector machines to classify simulated
data arising from the linked twist map, a discrete dynam-
ical system that models mixing, by the parameter driving
the system [3] (see panel (f)). Previously these types of
classi�cation were intractable. We also used persistence

images and a subspace discriminant ensemble to learn parameters in data generated from
the anisotropic Kuramoto-Sivashinsky (aKS) equation (a partial di�erential equation model),
which exhibits a phenomena called chaotic bubbling. (See �g. on page 1.)

The Bradley–Shipman (BS) equations [12] whichmodel ion bombardment of a binary compound
have several linear and nonlinear parameters, which provides a richer context for investigating
parameters. With persistence images, we performed similar classi�cation tasks on various
sets of parameter values and were able to distinguish between di�erent linear and nonlinear
parameters [8]. It is hypothesized that interactions between nonlinear parameters can cause
defects to catastrophically worsen, but further investigation into the e�ects of these nonlinear
parameters is needed. Along these lines, we are working to build a more robust regression
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model for learning parameters from data in this context and in a similarly posed problem, for
the complex Ginzburg-Landau equations.
When we have access to real-world data, we use persistence to build a framework for comparing
data with the associated model. This helps both to assess if mechanisms in the mathematical
models accurately capture the phenomena displayed in the data as well as to learn parameter
values from data. Initial results in the context of the two ion bombardment systems and the
coral project (i.e. where data is available) the show promise. This is an area of ongoing inquiry.

Future Work Persistent homology is a �exible framework that is powerful for creating low-
dimensional representations of essential features of complex data, characterizing geometric
structure, learning underlying parameters and probing their in�uences, and comparing data to
models. I am most interested in is developing methods for a more robust inclusion of temporal
evolution of structures, rather than snapshots of their evolution. This will open the door to
better understanding temporal changes in dynamic data.
My research o�ers many entry points to undergraduate and graduate students and attracts
students with a wide range of interests, such as math, statistics, data science, physics, and
biology. The applications of techniques developed in my research are wide-ranging. Recent
software developments make the computation of persistence much more accessible. Relying on
data to initially introduce a student to these mathematical techniques can motivate questions
about both the data and the mathematics. I look forward to mentoring students on these
projects.
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