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Abstract While one-dimensional persistent homology can be an effective way to
discriminate data, it has limitations. Multidimensional persistent homology is a
technique amenable to data naturally described by more than a single parameter, and
is able to encoding more robust information about the structure of the data. However,
as indicated by Carlsson and Zomorodian (Discrete Comput Geom 42(1):71–271,
2009), no perfect higher-dimensional analogue of the one-dimensional persistence
barcode exists for higher-dimensional filtrations. Xia and Wei (J Comput Chem
36:1502–1520, 2015) propose computing one-dimensional Betti number functions
at various values of a second parameter and stacking these functions for each homo-
logical dimension. The aim of this visualization is to increase the discriminatory
power of current one-dimensional persistence techniques, especially for datasets
that have features more readily captured by a combination of two parameters. We
apply this practical approach to three datasets, relating to (1) craniofacial shape
and (2) Lissajous knots, both using parameters for scale and curvature; and (3)
the Kuramoto–Sivashinsky partial differential equation, using parameters for both
scale and time. This new approach is able to differentiate between topologically
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equivalent geometric objects and offers insight into the study of the Kuramoto–
Sivashinsky partial differential equation and Lissajous knots. We were unable
to obtain meaningful results, however, in our applications to the screening of
anomalous facial structures, although our method seems sensitive enough to identify
patients at severe risk of a sleep disorder associated closely with craniofacial
structure. This approach, though still in its infancy, presents new insights and
avenues for the analysis of data with complex structure.

1 Introduction and Motivation

Persistent homology has emerged as a primary tool in topological data analysis,
encoding both topological and geometric characteristics of data. This is done
in the following way: a filtration of topological spaces is associated to data.
Using standard methods from algebra and topology, the topological features are
observed through the filtration and encoded in the invariant called a barcode.
The most common filtration is built on point cloud data by forming a simplicial
complex, on points within some proximity parameter, ε. Changes in homology of
the simplicial complex are observed as the proximity parameter increases, which
captures multiscale topological features. The reader is directed to [4, 12, 14] for a
careful introduction to persistent homology.

Although persistence barcodes are useful for distinguishing many objects,
there are limitations. For example, persistent homology alone cannot distinguish
between data sampled from a circle or from an ellipse of similar size, as both
shapes exhibit a topological hole. The discriminating power of persistent homology
could benefit by exploiting multiple characteristics of the data. Collins et al. [6]
suggested constructing simplicial complexes for a fixed proximity parameter ε by
varying a curvature threshold parameter κ , approximating the curvature numerically
using each point’s nearest neighbors. The resulting filtration would start with a
simplicial complex determined by the fixed value of ε and one would observe the
changing homology of this complex as points with low curvature are filtered out of
consideration. However, this method requires a choice of proximity parameter to be
made initially. The removal of such choices is a strength of persistent homology.

Multidimensional persistent homology provides the mathematical framework to
characterize datasets naturally described by more than one parameter. For instance,
we may wish to study homological changes in protein unfolding patterns as a
function of both time and scale, or even more simply perform several different
filtrations on geometric objects incorporating scale, curvature, or torsion. Figure 1
shows the evolution of a simplicial complex under changes in both scale and
curvature parameters ε and κ , respectively.

It has long been proven [5], however, that no perfect higher-dimensional
analogue of the one-dimensional persistence barcode—that is, a complete discrete
algebraic invariant—exists for higher-dimensional filtrations. The problem of gener-
alizing a barcode from a single dimension to multiple dimensions remains a difficult
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Fig. 1 Visualization of a bifiltration parametrized by curvature κ and distance, or scale ε for a
simulated dataset sampled from an elliptical spiral. As the curvature parameter κ increases on the
vertical axis, points with curvature less than κ are removed from the dataset. The scale parameter,
ε, increases along the horizontal axis. At a pair of filtration values, εi and κj , a Vietoris–Rips (VR)
complex is built on points in the dataset within a distance of εi , after removing points from the data
with curvature less than κj (Edges, but not faces of the VR complex are shown)

mathematical problem [18]. The theoretical limitation of accessible representations
of multidimensional persistence, however, does not stop researchers’ heuristic
applications to a wide range of fields including brain networks [17], Vicsek and
D’Orsogna models [26], and biomolecular data [29], for example.

In this article, we consider a practical approach to approximating multidi-
mensional persistent homology. Looking to the 2015 work of Xia and Wei [29],
we further develop their methods of pseudo-multidimensional persistence. We
are particularly motivated by the task of increasing the discriminatory power
of current one-dimensional persistence techniques. To accomplish this goal, we
use the pseudo-multidimensional persistence technique to incorporate additional
parameters into the standard one-variable filtration and a computationally-feasible
framework that admits the desired discriminatory power.

We close this introduction with a brief description of the following sections.
Section 2 proposes a nonparametric method to compare the point-cloud datasets
using pseudo-multidimensional persistence in two variables, which we apply to the
simple problem of distinguishing between a circle and an ellipse using scale and
curvature parameters. In Sects. 3–5, we apply methods for pseudo-multidimensional
persistence to real-world and simulated datasets, including craniofacial shape,
Lissajous knots, and the Kuramoto–Sivashinsky partial differential equation. We
conclude this work in Sect. 6 with comments on these heatmap methods and
suggestions for future work.
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2 Illustration of Heatmap Method with Circle and Ellipse

We return to the challenge of distinguishing a circle from an ellipse to illustrate
the extension of one-dimensional persistence to a two-dimensional heatmap built
from filtrations of both scale and curvature. In general, an appropriate method
for the calculation of curvature at each point of a point-cloud dataset may differ
depending on the nature of the data. In this paper, for noisy data obtained in applied
settings, such as the craniofacial data of Sect. 3, we employ a generalization of
the hyper circle-fitting algorithm [2] to arbitrary dimensions to estimate curvature:
The curvature at a given point will be defined as the reciprocal of the radius of
the hypersphere fit locally to the dataset at that point. Our choice of algorithm is
discussed further in Sect. 3. In pure settings, such as with the Lissajous knots of
Sect. 4, it may be possible to calculate curvature analytically.

Consider a set of points sampled from a uniform random distribution on the
boundary of a circle of radius 1 and the boundary of an ellipse with major axis
2 and minor axis 1, both with a small amount of added noise. We mix noise into the
sample data in order to replicate real data that is generally composed of true signal
which we wish to estimate, and random noise that we wish to ignore. We first set
a dimension p as the dimension of the homology to examine, and further fix finite
sequences (κi)

K
i=1 and (εj )

J
j=1 of curvature and distance thresholds, respectively.

For each dataset and for each choice of curvature and distance thresholds κi

and εj , we calculate the p-th Betti number, βp at the specified thresholds. More
specifically, only considering those points of the dataset with estimated curvature
at least the chosen threshold κi , we calculate the number βp(κi, εj ) of p-th
dimensional homological components at the scale parameter εj . In implementation,
this is done by constructing a persistence barcode for the Vietoris–Rips filtration
on each dataset after removing points with estimated curvature less than κi ,
and computing the number of p-th dimensional homological components at each
distance threshold εj . The heatmap matrix formed by associating βp(κi, εj ) to
each position (i, j). As shown in Fig. 2, the heatmaps for a circle and an ellipse
visually differentiate between them. In particular, the heatmap representing the first
homological dimension for a circle shows a topological hole of fairly uniform
prominence (visualized as the values across a single row of the heatmap). This
continues up to a certain curvature threshold, above which there is no longer a hole,
as expected. There is a notable decrease in the prominence of the topological hole
for higher curvature thresholds of the ellipse.

Motivated by the above result, we now propose a nonparametric test of dissim-
ilarity between the heatmaps generated from two sample spaces SA and SB . To do
this, we compare the heatmap derived from a single sample of SB with heatmaps
obtained from N samples of SA. For our example, SA and SB represent, respectively,
the sample space of points sampled from the circle and ellipse described above.

1. Fix a sequence of curvature and scale thresholds (κi)
K
i=1 and (εj )

J
j=1, respec-

tively. For n = 1, 2, · · · , N , create the K × J heatmap matrix HA
n , where each
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Fig. 2 (Top row) β0 (center) and β1 (right) heatmap plots of the circle on the left. (Bottom row)
β0 (center) and β1 (right) heatmap plot of the ellipse on the left. The horizontal and vertical axes
of each heatmap indicates values of the scale and curvature parameters ε and κ , respectively. In
all heatmaps above, Betti numbers β are plotted as ln(β + 1), so that heatmap colors show better
contrast for large differences in Betti number. We can see, visually, the differences in the circle and
ellipse heatmaps for each dimension

of these heatmaps is generated from a sample of SA. In general, we define the
entry in the i-th row and j -th column of a heatmap matrix to be βp at curvature
and scale threshold parameters κi and εj , respectively, divided (or “normalized”)
by the total number of points in the sample used to obtain the heatmap.

2. Calculate the mean heatmap matrix H
A

of the heatmap matrices obtained in the

previous step. More precisely, H
A = 1

N

∑N
n=1 HA

n .

3. For n = 1, 2, · · · , N, calculate the dissimilarity dn between each heatmap HA
n

and the mean heatmap H
A

: As an example, we could define such dissimilarity by

dn = d(HA
n ,H

A
) =

K∑

i=1

E∑

j=1

[
ln

(
(HA

n )ij + 1
) − ln

(
(H

A
)ij + 1

)]2
.

4. Calculate the dissimilarity dobs between the heatmaps H
A

and HB , where HB is
the heatmap generated from a point-sampling of SB .

5. (Step 4 may be iterated using repeated samples obtained from SB , if available).
One may take the p-value for this test to be the proportion of iterations of Step
4 where {dn > dobs}. A smaller p-value indicates stronger evidence that the
heatmaps generated from each of the sample spaces SA and SB are different.
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Table 1 Parameters and results for the proposed non-parametric test of dissimilarity for compar-
ing point-cloud datasets

Test # N nA nB K J s p0 p1

1 (circle, ellipse) 20 200 200 20 100 0.3 0 0

2 (ellipses) 20 200 200 20 100 0.3 1 1

3 (3-leaf, 4-leaf clovers) 20 250 250 20 50 0.3 0 0

4 (wedge product of two spheres) 20 600 600 20 100 0.3 0 0

The columns represent number of bootstrap samples (N ), number of points in each point-cloud
(nA, nB ), number of curvature and scale thresholds used (K and J , respectively), radius of the
hypersphere used for curvature estimation (s), and p-values for the proposed test in dimension 0
(p0) and 1 (p1)

To test the above procedure, we performed a number of experiments with
generated data. These tests are summarized in Table 1, where the SA and SB columns
describe the sample spaces being compared, N the number of samples drawn from
SA, nA and nB the number of points sampled from each sample space, K and J

the number of curvature and scale parameter threshold values chosen, s the radius
of the neighborhood used during curvature estimation, and p0 and p1 the p-values
calculated by the test when comparing the zero- and one-dimensional homology
groups of SA and SB .

Curvature thresholds are chosen to be {qk/K |k = 0, . . . , K − 1}, where qp is the
p-th quantile for all computed curvature values, for p ∈ [0, 1]. Fifty scale thresholds
were similarly chosen using quantiles of the death times of dimension-0 homolog-
ical components obtained from univariate persistent homology applied to each of
datasets under consideration. The sample spaces compared in each test, SA and SB ,
respectively, are as follows. Test #1 compares an ellipse with vertical axis of length 2
and horizontal axis of length 1, rotated 45 degrees CCW against the unit circle. Test
#2 compares an ellipse with vertical axis of length 2 and horizontal axis of length 1,
rotated 45 degrees counterclockwise against the same ellipse but rotated 45 degrees
clockwise. Test #3 compares a“three-leaf clover” shape with a “four-leaf clover”
shape, as shown in Fig. 3. Finally, Test #4 tests out method in three dimensions, and
compares the wedge product of two spheres with the same radius of 1 against the
wedge product of two spheres, one with radius 1 and the other with radius 2.

From the results of our tests, we see that the above approach is sensitive enough
to distinguish between shapes that are homologically equivalent but have different
curvatures, as discussed at the beginning of this section. Furthermore, this method
is not overly sensitive to falsely distinguish between different point-samples of the
same object transformed under rotation. The proposed technique is clearly reliant on
the curvature estimates obtained for each point of the sampled dataset, particularly
when the sampled data contains a moderate amount of noise. While the hyper circle-
fitting algorithm is superior to numerous other circle-fitting methods—such as the
Kasa, Pratt, or Taubin fits—in terms of essential bias [2], we note that the curvatures
obtained are sensitive to moderate levels of noise in the sampled data. This is
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Fig. 3 (a and b) Test #2 datasets sampled from two ellipses identical up to rotation. (c and d) Test
#3 dataset sampled from curves resembling a three- and four-leaf clover. (e and f) Test #4 dataset
sampled from the wedge product of two spheres: only in one dataset are the two spheres of the
same radius

particularly true when the size of the neighborhood used to locally fit a hypersphere
to the given data (and, by extension, obtain the estimated curvature as the inverse of
the radius of this hypersphere) is small, or when the number of points used to fit the
hypersphere is otherwise small.

The remainder of this paper will detail several applications of heatmaps and
is organized as follows. The first task is to predict a patient’s risk of developing
a specific sleep disorder from facial scans. Next, we distinguish specific types of
knots. Third, we show how heatmaps may be used to distinguish between dynamic
data of pattern evolution, driven by different parameter values. In these applications,
some knowledge about the data and possible distinguishing characteristics drives the
choice of the types of filtrations (for instance, curvature and distance in the previous
example). It is our hope that through these examples, we demonstrate the added
utility of the heatmap representation of a pseudo-multidimensional persistence in a
variety of contexts.

3 Craniofacial Shape Analysis

We examine the use of heatmaps in an applied setting, namely, in the analysis of
point-cloud scans obtained from pediatric patients for the screening of obstructive
sleep apnea (OSA). Pediatric OSA is a sleep disorder with serious health problem
that may lead to high blood pressure, behavioral challenges, or altered overall



186 C. Betancourt et al.

growth. The gold standard for pediatric OSA diagnosis is overnight polysomnogra-
phy in a hospital or sleep clinic [19]. In many countries, however, access to overnight
polysomnography is severely limited and many children are unable to obtain a
proper diagnosis before treatment. This absence of an accessible diagnostic method
thus prompts the search for alternative screening methods. Evidence continues to
demonstrate a link between craniofacial shape and pediatric OSA [13]. As part of a
larger research initiative examining alternative OSA screening methods leaning on
orthodontic expertise and statistical techniques for shape and high-dimensional data
analysis, we examine the utility of the proposed heatmap method for identifying
children at risk of developing OSA on the basis of 3D craniofacial scans.

The dataset used in our investigation is composed of 3D facial scans obtained
from 31 children 2–17 years of age recruited from the Stollery Children’s Hospital
at the University of Alberta. Prior ethics approval has been granted by the University
of Alberta’s Research Ethics Board. All of the recruited subjects have undertaken
overnight polysomnography and have had 3D photos of their face taken. Based
on polysomnography results, an apnea–hypopnea index (AHI) for each subject
was calculated. These AHI measurements obtained from polysomnography are
commonly used to classify patients according to OSA risk severity into one of four
categories: no likely risk (AHI < 1), mild risk (1 ≤ AHI < 5), moderate risk
(5 ≤ AHI < 10), and severe risk (AHI ≥ 10). In this preliminary analysis,
we only seek to classify patients into one of two derived groups: no/mild risk
(AHI ≤ 5) and moderate/high risk (AHI > 5).

The 3D photo of each patient’s face is itself a point-cloud in R
3. For each point, a

measure of curvature is computed (see Fig. 4). This task is more difficult than when
working with analytic curves, such as the Lissajous knots in the following section.
To approach the issue of curvature estimation in this applied setting, we seek to
locally fit a sphere in the neighborhood of each point of the dataset. In general, we
define the curvature of a dataset at a given point to be the reciprocal of the radius of
a hypersphere fit to the dataset in a neighborhood of that point. In our case, we take
this neighborhood to be a cube with a manually-selected side length centered at the
point whose curvature is being estimated. The relative size of this neighborhood is
shown in Fig. 5 for reference.

For the estimation of point-cloud curvature, we implement Al-Sharadqah and
Chernov’s hyper circle-fitting algorithm [2] in three dimensions. We choose to use
this particular method due to its simplicity in generalizing to fit hyperspheres to
data of arbitrary dimension and in its property of being essentially unbiased. In
other words, while the hyperspheres fit by this method are not unbiased, the level
of bias is proportional to the reciprocal of the number of points being fit to. As
a result, we have control over the amount of bias in the parameters of the fitted
hypersphere—an improvement over other estimation methods [2]. To create the
heatmaps for a filtration in both scale and curvature, we must first choose a set
of scale and curvature thresholds. In our case, we select curvature thresholds to be
the quantiles of the curvature values computed for all points in all point-clouds from
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Fig. 4 (Left) An example of a raw point-cloud dataset. (Middle) The same point-cloud dataset as
on the left, with points colored according to curvature. White represents low estimated curvature,
while deep blue represents high estimated curvature. (Right) The β0 heatmap corresponds to the
two-parameter filtration of the dataset on the left by both scale and curvature

Fig. 5 A point-cloud
extracted from a single
patient. Shown in red is the
neighborhood used to
estimate the curvature of
some point in the centre of
the red-shaded region

all patients. Twenty quantiles were chosen, namely, {qk/19|k = 0, . . . , 19}, where
qp is the p-th quantile for all computed curvature values, for p ∈ [0, 1]. Fifty scale
thresholds were similarly chosen using quantiles of the death times of dimension-0
homological components obtained from univariate persistent homology applied to
each of the patient datasets. We stress that the existence of an “optimal” method of
choosing these scale and curvature threshold values has not been investigated in any
depth and remains a topic for future work.

Having obtained heatmaps for each patient, we now proceed to address the task
of classifying patients into the no/low risk or the moderate/severe risk groups.
Due to the study design, a number of the pediatric patients are designated as
controls with little to no risk of OSA: Using the heatmaps obtained from these
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Fig. 6 A visual summary of the dissimilarity (x-axis) between each patient’s computed heatmap
and the average control heatmap. Controls are represented with blue points, while cases (that is,
non-controls) are represented using red points. One case patient (numbered as patient #1), at a
distance of 1.2 from the mean control heatmap, is not shown in this diagram to preserve scale.
Clearly, the heatmap distance does not adequately distinguish cases from controls. Seven out of
twelve cases were clustered with the most of control subjects. Subject #1 indicates a possible
outlier; however, its actual AHI is 10.0, the 7th highest AHI. Subject #55 has the highest AHI
of 40.2

control patients, we compute an average heatmap for the controls. From here, we
calculate the dissimilarity between each patient’s heatmap and the average control
heatmap, according to the dissimilarity measure defined in the previous section.
These dissimilarities, for both controls and cases (non-controls), are summarized in
Fig. 6 and in Table 2, sorted by increasing AHI score.

It is immediately apparent that the distance from the mean control heatmap does
not correlate well with AHI score. Indeed, patient 25, for example, has a heatmap
closer to the mean control heatmap than nearly all control patients but has one of the
highest AHI scores. Most case subjects (11 out of 15) were clustered together with
control subjects. There are four cases (subjects 7, 55, 31, and 1 (not shown in the
diagram)) that appear different from other subjects, however. Further investigating
these subjects, we learn that subjects 1, 7, and 55 either have undergone or have
scheduled a tonsillectomy and/or adenoidectomy surgery, suggesting that these
patients have severe OSA symptoms. Subject 31 was recommended to an ears, nose,
and throat specialist for further diagnosis.

Although our heatmap method is able to detect severe OSA cases, these results
suggest that the approach used may not be appropriate in developing craniofacial
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Fig. 7 (a) Estimated density function for the computed curvature values for each patient. Curves
corresponding to control subjects are shown in blue, while those corresponding to cases are shown
in red. (b) β0-barcode based on the Kullback–Leibler measures between the density curves. β0-
barcode indicates six clusters among 31 subjects

shape analysis as a proxy for overnight polysomnography and the derived AHI
scores. More generally, our results here leave much in the way of future work in
this area, although demonstrated an ability to identify extreme OSA cases. It may
be necessary to focus on a specific part of the face rather than the face in its entirely,
or perhaps curvature and scale thresholds need to be selected in a way that will allow
the resulting heatmaps to better highlight differences between the faces under study.
Furthermore, it may be of use to apply different statistical techniques, such as those
in machine learning, to this problem of heatmap classification.

As a means of comparison, we also apply one-dimensional persistent homology
to craniofacial data. We estimate the probability density function of the curvature
values computed for each patient (Fig. 7). We calculate Kullback–Leibler distance
which measures the difference between two probability distributions over the same
variable [16]. A β0-barcode based on the Kullback–Leibler divergence between den-
sities is shown in Fig. 7. Subjects corresponding to the six most persistent clusters
are presented in Fig. 8 applying multidimensional scaling. Multidimensional scaling
(MDS) is a nonlinear dimension reduction technique in which the data is assigned
coordinates in a lower dimensional space in a way that most closely preserves the
distance between points.

The largest cluster is formed with 17 subjects—8 cases and 9 controls. We also
see a similar pattern in the second largest component composed of 3 cases and 2
controls. Univariate persistent homology is unable to differentiate between these
two groups, while the heatmap approach seems to be able to do so for extreme cases.
This result demonstrates that some benefits exist in choosing to use heatmaps over
univariate persistent homology, particularly for the analysis of datasets described by
multiple parameters.

Both the proposed heatmap and univariate persistent homology methods based on
curvature fail to differentiate between obstructive sleep apnea patients and controls,
except that bifiltration heatmap was capable of detecting a few extreme cases (see
Fig. 6). We can think of three potential reasons for this: (1) curvature may not be
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Fig. 8 Clustering patterns of subjects presented on first two MDS coordinates (coordinate 1 on
X-axis and coordinate 2 on Y-axis). The subgroups (clusters) do not seem to relate to any common
traits among the subjects. The largest cluster (in purple) consists of 17 subjects—8 cases and 9
controls. The second largest cluster (in blue) consists of five subjects—3 cases and 2 controls

the best way to measure craniofacial form, (2) our proposed heatmap method is
not effective for complex data such as face shape, or (3) AHI may not be the
most effective variable in determining the presence or absence of OSA as several
researchers have suggested [30].

4 Lissajous Knots

In this section, we apply the heatmaps to the study of a geometric object, namely,
Lissajous knots. The filtrations throughout this section use scale and curvature
parameters. Our goal is to use known curves, Lissajous knots, to investigate how
heatmaps can help us understand features of this data. In particular, as shown below,
we deduce that the two flares seen in the heatmaps from these Lissajous knots
correspond with the fact that the data points of highest curvature are separated into
two disjoint sets. In the future, we would like to use this information to interpret
the heatmaps of data sets from other one-dimensional curves (such as other types of
knots and some time series data) where the density of data points is higher around
curves.

A Lissajous knot [3] is a closed curve that is isotopic to some curve with
parameterization of the form

x(t) = cos(nxt + φx)

y(t) = cos(nyt + φy)

z(t) = cos(nzt + φz),
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Fig. 9 The (3, 4, 7, 0.1, 0.7)
Lissajous knot given by the
parameterization
(x(t), y(t), z(t)) = (cos(3t +
0.1), cos(4t + 0.7), cos(7t))

is of type 821 according to
Rolfsen’s Knot Table [22].
The knot is colored by z value
(vertical axis). We
immediately observe that the
curvature of this knot is
largest at its highest and
lowest heights, that is, where
minimum and maximum
values of z are attained.
Visually, we see that the
knot’s curvature oscillates
periodically between large
and small values as the path
of the knot is traced out

where 0 ≤ t ≤ 2π and i and j are any distinct elements of {x, y, z}. We require
the frequencies ni to be pairwise relatively prime integers, φi a real number, and
niφj − njφi not a multiple of π . These conditions ensure that the resulting curve is
closed and without self-intersection. To simplify we may, with a change of variable,
assume that φz = 0: this parameterization places the Lissajous knot inside the cube
centered at the origin with edge length 2. As such, we may denote a Lissajous
knot by (nx, ny, nz, φx, φy). For example, Fig. 9 shows the (3, 4, 7, 0.1, 0.7)
Lissajous knot, given by (x(t), y(t), z(t)) = (cos(3t +0.1), cos(4t +0.7), cos(7t)).
Under Rolfsen’s Knot Table classification [22], this knot is of type 821. According
to Table 1 of [3], a given knot type may be associated with multiple values of
(nx, ny, nz, φx, φy): As such, in this section, we restrict ourselves to exactly one
parameterization for each of the knot types considered.

Lissajous knots have practical applications, particularly in the modelling of DNA
[3], and have thus been well-studied. The knots in this family are highly symmetric,
with curvature values changing predictably over a wide interval as a function of t .
These properties make Lissajous knots an appropriate object of interest in our study
of heatmaps where we may naturally incorporate both scale and curvature filtration
parameters.

For each Lissajous knot considered, we create a dataset with size proportional to
the knot’s total arc length. The (3, 4, 7, 0.1, 0.7) Lissajous knot, for example, with
the parameterization given previously, has an arc length of 36.8. We thus choose
to create the dataset for this knot using 368 sampled points. Since the knot itself is
parameterized by t , we create the dataset S by picking 368 equally-spaced t values
between 0 and 2π , that is, S = {tk = 2πk/368 | k = 0, . . . , 367} and find their
spatial coordinates (x(tk), y(tk), z(tk)), for k = 0, . . . , 367.
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Fig. 10 Super-level set point-clouds from the (3, 4, 7, 0.1, 0.7) Lissajous knot dataset. (Left) All
points with curvature greater than 0, that is, the entire dataset of 368 points. (Middle) All points
with curvature greater than 1, consisting of 147 points. (Right) All points with curvature greater
than 3, comprised of 47 points
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Fig. 11 Persistence heatmap for the first homology group of (3, 4, 7, 0.1, 0.7) Lissajous knot
dataset. The one-dimensional heatmap for the entire dataset of 368 points is shown in the bottom
row of the heatmap, with the one-dimensional heatmaps for the smaller datasets stacked on top
in increasing order of curvature threshold used. The distance threshold increases along the x-axis
from 0 to 3 using step size 0.3. The color scale on the right represents the natural log of the
dimension-1 Betti numbers after being increased by 1

Using Mathematica, we then (analytically) compute the curvature, κ(t), at each
selected point, and create super-level sets Sh = {(x(t), y(t), z(t)) ∈ R

3 : κ(t) > h},
for any real h, referred to as the curvature threshold. In short, Sh consists of all points
of the dataset with curvature strictly greater than h.

Figure 10 shows three such super-level sets from the (3, 4, 7, 0.1, 0.7) Lissajous
knot dataset. Figure 11 displays the persistence heatmap for the first homology
group for this knot under various scale and curvature threshold values.

We can create a larger heatmap by choosing more curvature thresholds as in
Fig. 12, which shows another heatmap for the (3, 4, 7, 0.1, 0.7) Lissajous knot.
Along the x-axis is the scale parameter ranging from 0 to 3 with step size 0.3. Along
the y-axis is the curvature parameter ranging from 0 to the maximum curvature by
step size 0.1. The maximum curvature for each knot is different: For example, the
we use maximum curvature 16.5 for the (3, 4, 7, 0.1, 0.7) knot.



194 C. Betancourt et al.

Distance Threshold

(3,4,7,0.1,0.7) (Betti 1)

0
0

5

10

15

1 2 3
0

0.5

1

1.5

2

2.5

log,hm[dim + 1, , ] + 1

C
ur

va
tu

re
 T

hr
es

ho
ld

Fig. 12 Heatmap for the (3,4,7,0.1,0.7) Lissajous knot. The distance threshold increases along the
x-axis from 0 to 3 by step size 0.3. The curvature threshold increases along the y-axis from 0 to its
maximum curvature 16.5 by step size 0.1. The color scale on the right represents the natural log of
the dimension-1 Betti numbers after being increased by 1
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Fig. 13 Left: the (3, 2, 5, 1.5, 0.2) Lissajous knot with parametrization (x, y, z) = (cos(3t +
1.5), cos(2t + 0.2), cos(5t)). Right: the heatmap for this knot. The distance threshold increases
along the x-axis from 0 to 3 by step size 0.3. The curvature threshold increases along the y-axis
from 0 to a maximum curvature 6.5 by step size 0.1. The color scale on the right represents the
natural log of the dimension-1 Betti numbers after being increased by 1

Figures 13 and 14 show two more heatmaps for other Lissajous knots, namely,
(3, 2, 5, 1.5, 0.2) and (2, 3, 11, 0.2, 0.7), respectively, along with their knot graphs.
The (3, 2, 5, 1.5, 0.2) Lissajous knot is given by (x, y, z) = (cos(3t +1.5), cos(2t +
0.2), cos(5t)) and has total arc length of 26.4. We then choose to construct the
dataset for this knot using 264 points. According to Rolfsen’s Knot Table [22],
this knot is of type 61. The (2, 3, 11, 0.2, 0.7) Lissajous knot is parameterized via
(x, y, z) = (cos(2t + 0.2), cos(3t + 0.7), cos(11t)) and has arc length of 47.8. We
thus create the dataset for this knot using 478 points.
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Fig. 14 Left: the (2,3,11,0.2,0.7) Lissajous knot with parametrization (x, y, z) = (cos(2t +
0.2), cos(3t + 0.7), cos(11t)). (Right) Heatmap for this Lissajous knot. The distance threshold
increases along the x-axis from 0 to 3 by step size 0.3. The curvature threshold increases along the
y-axis from 0 to its maximum value 107 by step size 0.1

Fig. 15 Cycles in the super level set at curvature threshold 1 of the (3, 4, 7, 0.1, 0.7) Lissajous
knot. (Left) Two cycles are present in the super-level set at distance threshold 1. (Right) Four cycles
are present in the super-level set at distance threshold 1.7

A curiosity of Figs. 12, 13, and 14 is the two blue-green flares across each
of the heatmaps. We investigate this further using the software ShortLoop[10] by
visualizing the cycles in the first homology of our dataset. Figure 15 shows the
cycles appearing in the super-level set of curvature threshold 1 for the (3, 4, 7, 0.1,
0.7) Lissajous knot at two different ε distance thresholds. We see two cycles at ε = 1
on the left, and four cycles at ε = 1.7 on the right.

As mentioned previously, Lissajous knots attain maximum curvature at their
highest and lowest heights (z values). As a result, filtering our data by curvature
may also be viewed as filtering by the absolute z-coordinate. For a given curvature
threshold, our point-cloud can then, loosely speaking, be clustered into groups with
a relatively high z and those with relatively low z. The flares in the heatmap represent
these two clusters. When ε is smaller than the distance between the clusters, cycles
in each cluster result, but no cycles exist connecting the two clusters. There is an
interval of ε values in which there are still no cycles between the clusters, but the
cycles within each cluster close up. This is the empty purple space between the
flares. Once ε is large enough, cycles again form, now connecting the two clusters.
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In addition to these two large clusters, we can see from the knots that we will
have small clusters of points at each of the knot’s local extrema. The number of
local maxima is given by the nz term in the parameterization. Knot (3, 2, 5, 1.5,
0.2) in Fig. 13, for example, has only five peaks, and the curvature at these peaks is
less than that in other knots. As a result, the points in the mini-clusters at each local
maximum and minimum are further spread apart, bringing these smaller clusters
closer together. We see this by the wider and closer flares in Fig. 13 heatmap. On
the other hand, knot (2, 3, 11, 0.2, 0.7) in Fig. 14 has eleven peaks and the points in
the clusters at the peaks have a higher curvature than the other knots. The smaller
clusters are thus denser, leading to larger gaps between these smaller clusters. The
resulting heatmap for this knot has skinnier, more separated flares, as seen in Fig. 14.

The heatmaps we have studied thus far demonstrate that Lissajous knots with
higher periodicity have skinnier flares and a larger range in curvature values that
results in more open space at the top of the plot. This preliminary work suggests
that this method may be useful in the study’s other periodic time series datasets.

5 Classification of Anisotropic Kuramoto–Sivashinsky
Solution

Indeed, there are many contexts where spatial structure of data is changing
temporally. In this vein, we will explore a complex spatio-temporal pattern, using
pseudo-multidimensional persistence to account for both the spatial and temporal
variation of a pattern. Such patterns often occur in nonlinear systems that are
driven from equilibrium by, for example, a gradient in temperature, concentration,
or velocity [24]. Consider the coloration patterns of zebras or specific species of
fish, ripples in sand dunes, or convection cell formations in clouds. Understanding
these pattern-forming systems is important to a wide variety of fields in the scientific
community such as biology, physics, engineering, and chemistry [7].

In modeling physical phenomena, it is often the case that poorly-resolved or
poorly understood processes are parametrized rather than treated explicitly. Because
of this, it becomes important to determine the influence of model parameters on
the system. There are a variety of methods to do this, many of which require
computationally expensive simulations [1]. Irregular time-varying structures and
complexity of patterns, and sensitivity to initial conditions, among other things,
make quantifying or even distinguishing patterns difficult [11]. Recently there has
been much interest in using topological methods in pattern formation and pattern
evolution, in particular in material sciences [28]. Computational topology has
emerged as a tool that retains some essential information for studying patterns, while
significantly reduces the dimensionality of the data [9]. For example, persistent
homology has been used to distinguish between parameters for complex patterns
formed through a phase separation process [11] in the Cahn–Hilliard equations.
In this example, the patterns were studied at specific, static moments in time.
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Pseudo-multidimensional persistence allows for the inclusion of the time evolution.
We will apply this technique to simulations of the two-dimensional anisotropic
Kuramoto–Sivashinsky equation.

The Kuramoto–Sivashinsky (KS) equation is a partial differential equation used
to model systems driven from equilibrium [21]. It has found many applications in
surface pattern-formation including flame front propagation [23], surface patterning
by ion-beam erosion [8, 20], epitaxial growth and instabilities related to electromag-
netism [27], the formation of suncups in snowfields [25], and solidification from a
melt [15]. The solution u(x, y, t) gives a patterned surface in two spatial variables
that evolves in time. This equation arises in applications as surface nanopatterning
by ion-beam erosion and solidification. The anisotropic Kuramoto–Sivashinsky
(aKS) equation is given by

∂u

∂t
= −∇2u − ∇2∇2u + r

(
∂u

∂x

)2

+
(

∂u

∂y

)2

, (1)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 . The parameter r controls the anisotropy in the nonlinear
term. The goal of this experiment is to classify sets of solutions by parameter
r . Numerical simulations of the aKS equation are generated for parameter values
r = 0.5, 0.75, 1, 1.25, and 1.5. Thirty trials for each parameter value are generated
using a low-amplitude white noise initial condition (Fig. 16). Persistent homology
is computed using sublevel sets. At each threshold height, a cubical complex
is built on neighboring points with values below the threshold. A filtration of
cubical complexes is formed by increasing the threshold from below the surface
to the maximum height of the surface. See [11] for an introduction to cubical
homology [22].

This data set was initially investigated in the paper [1], with the goal of
identifying parameter values of each example using persistent homology. Persistent
homology was computed using a cubical complex on a sublevel set filtration at a
single moment in time. In order to compare persistence diagrams, Adams et al.
devised a stable vector representation of persistence diagrams called persistence
images (PIs). Using this method, each persistence diagram is vectorized. Standard
machine learning algorithms may then be applied to classify the vectors based
on the parameter used to generate each surface. See the paper for full details
on the method. Using a subspace discriminant ensemble, which uses the same
classification algorithm repeatedly over randomly chosen subspaces of the data.
The algorithm fits the data by building a model on the mean and variance of
classes in a training set. Each example in the testing set is assigned a class for each
iteration. A likely overall class is assigned at the end. In this example, the data was
classified at several different time steps. The classification accuracies reported in
their experiment are listed in Table 3. Using this method, one must choose a single
moment in time to consider the data. We see the restriction to a single moment in
time as a limiting factor because the temporal evolution of the pattern is ignored.
The vectors representing several time steps may be concatenated into a larger vector
to be used for classification, but this causes the size of the vectors to grow quickly,
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Fig. 16 Plots of the examples of the surfaces u(x, y, · · · ) from the numerical simulations. Each
column is generated using a different parameter value; r = 0.5, 0.75, 1.0, 1.25, and 1.5. Each row
is a single point in time in the evolution of the pattern of the surface, the times shown are t = 3, 5
and 10. By t = 5 the elongation due to the anisotropy has stabilized, though the surface continues
to evolve in time. r=1 (center column) is the isotropic case; there is no elongation in either direction

Table 3 Classification accuracies at different times of the aKS solution, using a fivefold cross-
validated subspace discriminant ensemble on a vector representation of one-dimensional barcodes

Time Time Time
Persistence representation t=3 (%) t=5 (%) t=10 (%)

β0 PIs 58.3 96.0 94.7

β1 PIs 67.7 87.3 93.3

β0 and β1 PIs 72.7 95.3 97.3

Classification of times t = 15 and 20 results in accuracies similar to t = 10

which limits the machine learning techniques that may be efficiently applied. Even
with a low resolution, generating persistence images at each time step results in a
high-dimensional representation of the data. We consider heatmaps as an alternative
representation to capture the evolution of the pattern over time in a way that lends
itself to machine learning techniques.

A heatmap will be generated for each example. One dimension will be the height
of the sublevel set filtration, represented along the horizontal axis, and the other
dimension will be the time step, represented along the vertical axis. The top row
represents the earliest time step. Each entry is given by ln(βi + 1) where βi is the
Betti number in dimension 0 or 1. A single heatmap then will give the homological
feature information of the surface as it evolves in time. Examples of the heatmap in
each homological dimension are shown in Fig. 17. The earliest time is shown on the
top row. The pattern is just beginning to form at this stage, so topological features
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Fig. 17 Examples of heatmaps for the aKS equation, r = 1. The left shows zero-dimensional
homology and the right is one-dimensional homology. The top row is the earliest time step. The
pattern takes some time to emerge, so there in little by way of topological features at the early
times

Table 4 Classification accuracies using the MDS reduction of heatmaps and the MDS reduction
of PIs concatenated to incorporate several time steps

Accuracy of MDS Accuracy of MDS
Homological dimension reduced heatmap (%) reduced PIs, t=5,10,15 (%)

β0 69.3 72.0

β1 100 98.7

β0 and β1 100 100

MDS reduces the overall dimension to 2. Classification was performed using a fivefold cross-
validated linear discriminant

are still emerging as well. Interestingly, even though the pattern is dynamically
changing, there are not significant changes from one row to the next for much of the
time represented here. Once the heatmaps are formed, the L2 distance is computed
between each heatmap. As a natural dimension reduction step, we perform MDS
with a chosen dimension of 2. At two-dimensions, 95% of the variance of the data
is accounted for. The MDS representation is then used for classification. Similar
to [1], classification is performed with a linear discriminant ensemble with fivefold
cross-validation. In this case, there is no need to incorporate an ensemble of random
subspaces since the dimension of the data is 2. The classification accuracy of the
two-dimensional MDS for the heatmaps from β0 and β1 and the concatenated
information are given in Table 4. We include a comparison with classification
accuracies of PIs that have been concatenated to include several time steps, t=5,10,
and 15. The PIs were also reduced to 2 dimensions with MDS. Classification
accuracy is comparable when using the full time evolution (heatmaps), or several
discrete time steps (PIs). It is clear that β1 is much more discriminating than β0.
This is due to the nature of the pattern, which appears as raised bubbles. In a sublevel
set filtration, β1 will capture these features. Good classification results for the full
time evolution are encouraging because it suggests that heatmaps will prove useful
to capture more complete information on temporal evolution. In this case, enough
information was captured in several time steps that a method such as PIs could
be used, but in general this may not contain enough information to discriminate
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between classes. Heatmaps allow users to make use of more temporal data that may
be available to them. Heatmaps (combined with a dimension reduction technique)
provided very low dimensional representations of dynamically changing patterns,
that allowed for good parameter recovery.

6 Conclusion and Future Research

In this article, we proposed the heatmap as a tool to approximate multidimensional
persistent homology and explored applications to a variety of topics, including
shape analysis in 3D craniofacial imaging, Lissajous knots, and the solutions of
the anisotropic Kuramoto–Sivashinsky equation. Our use of heatmaps in these areas
allowed the incorporation of additional parameters such as scale, curvature, and
time, into the regular univariate filtrations of persistent homology. The addition
of a second parameter, particularly in our work with the Kuramoto–Sivashinsky
equation, allowed a new avenue of insight into the datasets studied that are
inherently described by multiple parameters.

As demonstrated in this paper, this technique for the approximation of multi-
dimensional persistence has potential for a wide range of application in numerous
fields. However, the techniques presented here are certainly still in their infancy
and there remains much work to be done in the future to make them competitive
with existing methods, particularly in terms of computational time and classification
accuracy. These issues, including the determination of a dissimilarity appropriate
for comparing heatmaps as well as the excessive computational time required by
our own and other existing techniques for topological data analysis, will need to be
addressed before these methods become widely applicable.
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